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Find a power series representation for the function and determine the interval of convergence. 
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Express the function as the sum of a power series by first using partial fractions. Find the interval of 

convergence. 
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8) For the function: 
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a) Use differentiation to find a power series representation for the function and find the radius of       

convergence. 

b) Use part a) to find a power series for: 
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Find a power series representation for the function and determine the radius of convergence. 
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Evaluate the indefinite integral as a power series. What is the radius of convergence? 
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14) Show that the function 
2

0

( 1)
( )

(2 )!

n n

n

x
f x

n

∞

=

−
=∑  is a solution of the differential equation ( ) ( ) 0f x f x′′ + = . 

Show  

 

 

 

 

 

 

 

 

15) Let 
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16) Given the geometric series 
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17) Use the power series for 1tan x
−  to prove the following expression for π  as the sum of an infinite series: 
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