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Find the Maclaurin series for ( )f x  using the definition of a Maclaurin series. Assume that f  has a power 

series expansion. Do not show that ( ) 0
n

R x → . Also find the associated radius of convergence. 
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4) ( ) xf x xe=   
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Find the Taylor series for ( )f x  centered at the given value of a . Assume that f  has a power series expansion. 

Do not show that ( ) 0
n

R x → . Also find the associated radius of convergence. 

5) 2( ) 1 , 2f x x x a= + + =   
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7) ( ) sin ,
2
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Use a derived Maclaurin series to obtain the Maclaurin series for the given function. Also find the associated 

radius of convergence. 
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10) 1( ) tanf x x x−
=  

2 2

0

( 1) , 1
2 1

n
n

n

x
R

n

+∞

=

− =
+

∑  

 

 

 

 

 

 

11) ( ) cos 2f x x x=  
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12) 2( ) sinf x x=  [Hint: Use 2 1
sin (1 cos 2 )

2
x x= − .] 
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13) 
3
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Evaluate the indefinite integral as an infinite series. 

14) 3cos( )x x dx∫  
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Use series to evaluate the limit. 

17) 
1

30

tan
lim
x

x x

x

−

→

−
  

1

3
 

 

 

 

 

 

 

18) 

3

50

1
sin

6lim
x

x x x

x→

− +

 
1

120
 

 

 

 

 

 

 

 



Calculus II Taylor and Maclaurin Series MathFortress.com 

 

Page 7 of 8 

 

Use multiplication or division of power series to find the first three nonzero terms in the Maclaurin series for 

each function. 

19) 
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Find the sum of the series. 
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